

Tetrahedron Letters 43 (2002) 8815-8818

A new stereocontrolled access to β -D-mannopyranosides and 2-acetamido-2-deoxy- β -D-mannopyranosides starting from β -D-galactopyranosides^{†,‡}

Emanuele Attolino, Giorgio Catelani* and Felicia D'Andrea

Dipartimento di Chimica Bioorganica e Biofarmacia, Università degli Studi di Pisa, Via Bonanno, 33, I-56126 Pisa, Italy Received 5 September 2002; revised 7 October 2002; accepted 8 October 2002

Abstract—A new stereocontrolled synthesis of β -D-mannopyranosides was defined relying on a high yielding sequence based on the following three key steps: (a) a stereospecific inversion at C-2 of β -D-galactopyranosides by an oxidation–reduction procedure; (b) a regiocontrolled formation of 4-deoxy- β -D-*threo*-hex-3-enopyranosides; (c) a regio- and stereocontrolled hydroboration–oxidation of the above enol ethers. The flexibility of this new method was demonstrated by its extension to the synthesis of 2-acetamido-2-deoxy- β -D-mannopyranosides and of an orthogonally protected β -D-mannopyranoside scaffold and, finally, by the transformation of lactose into the two biologically relevant disaccharides with primary structure β -D-Manp-(1 \rightarrow 4)-D-Glc and β -D-ManNAcp-(1 \rightarrow 4)-D-Glc. © 2002 Elsevier Science Ltd. All rights reserved.

Several naturally occurring complex oligosaccharide structures contain as relevant component a β -D-Manp or a β -D-ManNAcp unit. The former type of monosaccharide is a common fragment of the core region of N-linked glycoproteins, a class of glycoconjugates having a fundamental role in intercellular signaling,² while the second one is largely present in capsular polysaccharides and is involved in the immunological response of either Gram positive or Gram negative bacteria.³

The stereocontrolled synthesis of these types of glycosidic linkages remains, however, an important challenge for synthetic chemists, despite the impressive number of efforts in this direction.⁴ In the frame of an ongoing project aimed at the chemical valorization of lactose,¹ we have been interested in efficient methods for the transformation of β -D-galactopyranosides into β -D-mannopyranosides analogues, a procedure overall involving the epimerization both at C-2 and C-4.

Although the procedure based on a first epimerization at C-4 followed by a second one at C-2 (Scheme 1, route b) has been reported,⁵ we have not found any example of the alternative possibility employing the

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02232-3

 $Keywords: \beta$ -D-mannopyranosides; 2-acetamido-2-deoxy- β -D-mannopyranosides; β -D-talopyranosides; epimerization; hydroboration; stereoselectivity.

^{*} Corresponding author. E-mail: giocate@farm.unipi.it

[†] Dedicated to the memory of Professor Serena Catalano.

[‡] Part 17 of the series 'Chemical Valorization of Milk-Derived Sugars'. For Part 16, see: Ref. 1.

inverse epimerization sequence (Scheme 1, route a). We present here a useful way leading to the above result using three consecutive key steps: (a) a stereospecific inversion at C-2 of β -D-galactopyranosides; (b) a regio-controlled formation of 4-deoxy- β -D-threo-hex-3-enopyranosides;⁶ (c) a regio- and stereocontrolled hydroboration–oxidation of the above enol ethers (Scheme 2).

The C-2 epimerization was efficiently achieved applying an oxidation–reduction sequence to the mixed acetals **1** having the sole OH-2 group in the free form.⁷ Although the stereoselective C-2 epimerization of β -D-galactopyranosides by oxidation–reduction has been reported,⁸ the choice of acetals **1** as selectively protected intermediates represents by far the most efficient entry to β -D-talopyranosides in terms of chemical and stereochemical yields.⁹ The transformation of β -D-talopyranoside mixed diacetals analogous of **1** into compounds **2a–c**, having the sole OH-4 group free, was achieved with high yield through simple protecting group manipulations.⁹

The enol ethers **3** were successfully obtained through a recently reported method⁶ of simultaneous activation– elimination of axial hydroxyl groups with NaH–sulfuryl diimidazole (Im₂SO₂). In the specific case of 4-*O*-deprotected β -D-talopyranosides, this process leads with complete regioselectivity to 4-deoxy- β -D-*threo*-hex-3enopyranosides (**3a**–c)¹² owing to the stereoelectronic assistance offered by the antiperiplanar axial electronegative C-2 substituent to the base-promoted extraction of the axial C-3 hydrogen atom.

The transformation of enol ethers **3** into the targets β -D-mannopyranosides **4** was easily performed by hydroboration-oxidation with borane-dimethyl sulfide complex (BMS). The expected regioselective attack of the boron on the β -enolic carbon of enol ethers¹³ has been also reported in the case of glycals¹⁴ and 4-deoxy-hex-4-enopyranosides.¹⁵ In these reactions the stereo-chemical outcome of borane addition is controlled by steric factors directing the boron attack mostly or completely *anti* to the allylic substituent. Hydroboration of **3** gave results in full agreement with the previous

picture and a single compound was obtained in high yield¹⁶ having the new 4-OH group in a *trans* orientation with respect to the substituents to the two contiguous carbon atoms.¹⁷

The synthesis of orthogonally protected β -D-mannopyranosides, such as **4c**, is of great interest; this type of compounds, in fact, were reported only recently¹⁸ in the frame of some studies directed to the combinatorial synthesis of bioactive peptidomimetics. The transformation of **1** (X=OMe) into **4c** clearly elucidates the value of the present approach, leading to the target compound with an overall 46% yield in a sequence requiring only two chromatographic purifications.

A further extension of the synthetic scheme was devised, taking advantage from the regioselective formation of 2-acetamido-2,4-dideoxy- β -D-*threo*-hex-3-enopyranosides **5a**,**b**.⁶

Also in this case, the hydroboration–oxidation of enol ethers **5a,b** led with complete chemo-, regio- and stereoselectivity to the β -D-manno configured compounds **6a,b** (Scheme 3).^{16,17}

All final compounds **4a–c** and **6a,b** have never been reported but their structure was easily established by NMR analysis, characterized by a set of diagnostic coupling constants [very small $J_{1,2}$ (0–1.6 Hz) and large $J_{3,4}$ and $J_{4,5}$ (9–9.4 Hz)] typical of a mannopyranoside moiety and reported for a lot of analogues.^{5b,c,19}

In conclusion, we have presented a new, efficient and flexible method for the regio- and stereocontrolled transformation of β -D-galactopyranosides into β -Dmannopyranosides and 2-acetamido-2-deoxy-β-Dmannopyranosides through the epimerization at C-4 of β -D-talopyranosides never reported in literature. The usefulness of the method has been exemplified by the effective synthesis, starting from lactose, of biologically relevant disaccharide derivatives with primary structure β -D-Manp-(1 \rightarrow 4)-D-Glc and β -D-ManNAcp-(1 \rightarrow 4)-D-Glc, and by the synthesis of an orthogonally protected β -D-mannopyranoside scaffold. The use of the above strategy for the preparation of other di- and oligosaccharides containing β -D-mannopyranoside units is

Scheme 2. Reagents and conditions: (i) NaH, DMF, 0°C, then Im_2SO_2 , -30°C, 3 h, 80-95%; (ii) $BH_3 \cdot SMe_2$, 2 h, then H_2O_2 , NaOH, 2 h, 82-90%.

Scheme 3. Reagents and conditions: (i) BH_3 ·SMe₂, 2 h, then H_2O_2 , NaOH, 2 h, 82–90%.

under investigation in our laboratory and will be presented in due course.

Acknowledgements

This research was supported with funds of University of Pisa in the frame of the national project COFIN 2002 (MIUR–Rome).

References

- Catelani, G.; Corsaro, A.; D'Andrea, F.; Mariani, M.; Pistarà, V. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3313– 3315.
- 2. Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
- Jennings, H. J. Adv. Carbohydr. Chem. Biochem. 1983, 41, 155–208.
- For a recent review specifically covering the construction of β-D-mannopyranoside and 2-deoxy-2-acetamido-β-Dmannopyranoside linkages: Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1 2000, 1471–1491.
- (a) Sato, K.-I.; Yoshimoto, A. Chem. Lett. 1995, 39–40;
 (b) Sato, K.-I.; Yoshimoto, A.; Takai, Y. Bull. Soc. Chem. Jpn. 1997, 70, 885–890;
 (c) Akai, S.; Kajihara, Y.; Nagashima, Y.; Kamei, M.; Arai, J.; Bito, M.; Sato, K.-I. J. Carbohydr. Chem. 2001, 20, 121–143.
- Attolino, E.; Catelani, G.; D'Andrea, F. *Tetrahedron Lett.* 2002, 43, 1685–1688.
- Compound 1, X=OMe: Barili, P. L.; Berti, G.; Catelani, G.; Colonna, F.; Marra, A. *Tetrahedron Lett.* 1986, 27, 2307–2310; Compound 1, X=2,3:5,6-di-O-isopropylidene-*aldehydo*-D-glucos-4-yl dimethyl acetal: Barili, P. L.; Catelani, G.; D'Andrea, F.; De Rensis, F.; Falcini, P. *Carbohydr. Res.* 1997, 298, 75–84.
- (a) Chittenden, G. J. F. Carbohydr. Res. 1976, 52, 23–29;
 (b) Haradaira, T.; Maeda, M.; Yano, Y.; Kojima, M. Chem. Pharm. Bull. 1984, 32, 3317–3319;
 (c) Nifant'ev, N. E.; Mamyan, S. S.; Shaskov, S.; Kochetkov, N. K. Bioorg. Khim. 1988, 14, 187–197;
 (d) Burton, A.; Wyatt, P.; Boons, G.-J. J. Chem. Soc., Perkin Trans. 1 1997, 2375–2382.
- 9. The preparation of compounds 2a and 2b has been reported in preliminary form.⁶ Compound 2c was prepared through an unreported sequence starting with the oxidation-reduction of 1 (X=OMe), followed by the benzylation of the OH-2 group (BnBr, KOH, 18-crown-

6/THF), the hydrolytic removal of the two acetonide function (80% aq. AcOH) to give the triol 7 which was submitted to a stannylidene acetal promoted *p*methoxybenzylation¹⁰ (Bu₂SnO, toluene, reflux, then PMBCl, Bu₄NI, reflux) to the diol **8**, that was finally regioselectively methoxymethylated at OH-6 (MOMCl, DIPEA/CH₂Cl₂) to give **2c** with an overall yield of 70%.

- 10. The regioselective opening at C-3 of the 3,4-O-stannylidene acetals of the β -D-talo derivatives is identical to that of their β -D-galactopyranoside analogs,¹¹ pointing to a similar conformational situation.
- 11. David, S.; Hanessian, S. Tetrahedron 1985, 41, 643-663.
- 12. Compounds **3a** and **3b** were previously reported.⁶ Compound **3c** was prepared with the same procedure⁶ from **2c**. Selected NMR (¹H, 200 MHz ¹³C, 50 MHz, CDCl₃) data of **3c**: $\delta_{\rm H}$ 3.60 (dd, 1H, $J_{5,6a}$ =5.5 Hz, $J_{6a,6b}$ =10.1 Hz, H-6a), 3.74 (dd, 1H, $J_{5,6b}$ =6.1 Hz, H-6b), 4.51 (d, 1H, $J_{1,2}$ =2.1 Hz, H-1), 4.90 (d, 1H, $J_{4,5}$ =1.8 Hz, H-4), $\delta_{\rm C}$ 98.2 (C-4), 101.5 (C-1), 152.3 (C-3).
- Brown, H. C.; Sharp, R. L. J. Am. Chem. Soc. 1968, 90, 2915–2927.
- Murali, R.; Nagarajan, M. Carbohydr. Res. 1996, 280, 351–355.
- Audrain, H.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2000, 65, 4487–4497.
- 16. Compound 4a: 90% yield, white foam, mp 95–100°C, [α]_D -97 (c 1.0, CHCl₃); 4b: 82% yield, syrup, [α]_D -61 (c 0.9, CHCl₃); 4c: 66% yield from 2c, white solid, mp 86–88°C (EtOAc-hexane), [α]_D -101 (c 0.9, CHCl₃); 6a: 75% yield, white needles, mp 99–100°C (EtOAc-hexane), [α]_D -42 (c 0.9, CHCl₃); 6b: 80% yield, white solid, mp 185–190°C (dec.) (EtOAc-hexane), [α]_D -50 (c 1.5, CHCl₃).
- 17. Selected NMR data (¹H, 200 MHz ¹³C, 50 MHz). Compound **4a**: $\delta_{\rm H}$ (CDCl₃) 3.30 (dd, 1H, $J_{2,3}$ =2.9 Hz, H-3), 3.95 (t, 1H, $J_{3,4}$ = $J_{4,5}$ =9.4 Hz, H-4), 4.32 (s, 1H, H-1), $\delta_{\rm C}$ (CDCl₃) 68.1 (C-4), 102.7 (C-1); **4b**: $\delta_{\rm H}$ (CDCl₃) 3.25 (dd, 1H, $J_{2,3}$ =3.0 Hz, H-3'), 4.00 (t, 1H, $J_{3',4'}$ = $J_{4',5'}$ =9.4 Hz, H-4'), 4.76 (s, 1H, H-1'), $\delta_{\rm C}$ (CDCl₃) 68.3 (C-4'), 102.3 (C-1'); **4c**: $\delta_{\rm H}$ (CDCl₃) 3.26 (dd, 1H, $J_{2,3}$ =2.9 Hz, H-3), 3.91 (t, 1H, $J_{3,4}$ = $J_{4,5}$ =9.4 Hz, H-4), 4.34 (s, 1H, H-1), $\delta_{\rm C}$ (CDCl₃) 67.1 (C-4), 102.6 (C-1); **6a** characterized by its 4-*O*-acetate: $\delta_{\rm H}$ (C₆D₆) 3.44 (dd, 1H, $J_{2,3}$ =4.3 Hz, H-3), 3.98 (d, 1H, $J_{1,2}$ =1.6 Hz, H-1), 5.00 (ddd, 1H, $J_{2,\rm NH}$ =9.3

Hz, H-2), 5.47 (t, 1H, $J_{3,4}=J_{4,5}=9.0$ Hz, H-4), $\delta_{\rm C}$ (C₆D₆) 49.0 (C-2), 68.5 (C-4), 100.9 (C-1); **6b**: $\delta_{\rm H}$ (C₆D₆) 3.38 (dd, 1H, $J_{2',3'}=4.0$ Hz, H-3'), 3.88 (t, 1H, $J_{3',4'}=J_{4',5'}=9.4$ Hz, H-4'), 4.96 (d, 1 H, $J_{1',2'}=1.0$ Hz, H-1'), 5.18 (ddd, 1H, $J_{2',\rm NH}=9.8$ Hz, H-2'), $\delta_{\rm C}$ (C₆D₆) 49.3 (C-2'), 67.0 (C-4'), 100.7 (C-1').

18. (a) Boer, J.; Gottschling, D.; Schuster, A.; Holzmann, B.;

Kessler, H. Angew. Chem., Int. Ed. 2001, 40, 3870–3873; (b) Murphy, P. V.; O'Brien, J. L.; Gorey-Feret, L. J.; Smith, A. B., III. Bioorg. Med. Chem. Lett. 2002, 12, 1763–1766.

Aloui, M.; Chambers, D. J.; Cumpstey, I.; Fairbanks, A. J.; Redgrave, A. J.; Seward, C. M. P. *Chem. Eur. J.* 2002, *8*, 2608–2621.