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Abstract—A new stereocontrolled synthesis of B-D-mannopyranosides was defined relying on a high yielding sequence based on
the following three key steps: (a) a stereospecific inversion at C-2 of B-D-galactopyranosides by an oxidation-reduction procedure;
(b) a regiocontrolled formation of 4-deoxy-p-D-threo-hex-3-enopyranosides; (c) a regio- and stereocontrolled hydroboration—oxi-
dation of the above enol ethers. The flexibility of this new method was demonstrated by its extension to the synthesis of
2-acetamido-2-deoxy-B-D-mannopyranosides and of an orthogonally protected -D-mannopyranoside scaffold and, finally, by the
transformation of lactose into the two biologically relevant disaccharides with primary structure B-pD-Manp-(1—4)-D-Glc and

B-D-ManNAcp-(1-4)-D-Glc. © 2002 Elsevier Science Ltd. All rights reserved.

Several naturally occurring complex oligosaccharide
structures contain as relevant component a B-pD-Manp
or a B-D-ManNAcp unit. The former type of monosac-
charide is a common fragment of the core region of
N-linked glycoproteins, a class of glycoconjugates hav-
ing a fundamental role in intercellular signaling,” while
the second one is largely present in capsular polysac-
charides and is involved in the immunological response
of either Gram positive or Gram negative bacteria.’

The stereocontrolled synthesis of these types of glyco-
sidic linkages remains, however, an important challenge

for synthetic chemists, despite the impressive number of
efforts in this direction.* In the frame of an ongoing
project aimed at the chemical valorization of lactose,’
we have been interested in efficient methods for the
transformation of [B-D-galactopyranosides into p-D-
mannopyranosides analogues, a procedure overall
involving the epimerization both at C-2 and C-4.

Although the procedure based on a first epimerization
at C-4 followed by a second one at C-2 (Scheme 1,
route b) has been reported,’” we have not found any
example of the alternative possibility employing the
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inverse epimerization sequence (Scheme 1, route a). We
present here a useful way leading to the above result
using three consecutive key steps: (a) a stereospecific
inversion at C-2 of B-D-galactopyranosides; (b) a regio-
controlled formation of 4-deoxy-B-D-threo-hex-3-
enopyranosides;® (c) a regio- and stereocontrolled
hydroboration—oxidation of the above enol ethers
(Scheme 2).

The C-2 epimerization was efficiently achieved applying
an oxidation-reduction sequence to the mixed acetals 1
having the sole OH-2 group in the free form.” Although
the stereoselective C-2 epimerization of B-D-galactopy-
ranosides by oxidation-reduction has been reported,®
the choice of acetals 1 as selectively protected interme-
diates represents by far the most efficient entry to
B-D-talopyranosides in terms of chemical and stereo-
chemical yields.? The transformation of B-D-talopyrano-
side mixed diacetals analogous of 1 into compounds
2a—c, having the sole OH-4 group free, was achieved
with high yield through simple protecting group
manipulations.’

The enol ethers 3 were successfully obtained through a
recently reported method® of simultaneous activation—
elimination of axial hydroxyl groups with NaH-sulfuryl
diimidazole (Im,SO,). In the specific case of 4-O-depro-
tected B-D-talopyranosides, this process leads with com-
plete regioselectivity to 4-deoxy-B-D-threo-hex-3-
enopyranosides (3a—c)!?> owing to the stereoelectronic
assistance offered by the antiperiplanar axial elec-
tronegative C-2 substituent to the base-promoted
extraction of the axial C-3 hydrogen atom.

The transformation of enol ethers 3 into the targets
B-D-mannopyranosides 4 was easily performed by
hydroboration—oxidation with borane-dimethyl sulfide
complex (BMS). The expected regioselective attack of
the boron on the B-enolic carbon of enol ethers'® has
been also reported in the case of glycals' and 4-deoxy-
hex-4-enopyranosides.'> In these reactions the stereo-
chemical outcome of borane addition is controlled by
steric factors directing the boron attack mostly or com-
pletely anti to the allylic substituent. Hydroboration of
3 gave results in full agreement with the previous
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picture and a single compound was obtained in high
yield'® having the new 4-OH group in a trans orienta-
tion with respect to the substituents to the two contigu-
ous carbon atoms.!’

The synthesis of orthogonally protected B-D-mannopy-
ranosides, such as 4c, is of great interest; this type of
compounds, in fact, were reported only recently'® in the
frame of some studies directed to the combinatorial
synthesis of bioactive peptidomimetics. The transforma-
tion of 1 (X=0Me) into 4c¢ clearly elucidates the value
of the present approach, leading to the target com-
pound with an overall 46% yield in a sequence requir-
ing only two chromatographic purifications.

A further extension of the synthetic scheme was
devised, taking advantage from the regioselective for-
mation of 2-acetamido-2,4-dideoxy-B-D-threo-hex-3-
enopyranosides 5a,b.6

Also in this case, the hydroboration—oxidation of enol
ethers Sa,b led with complete chemo-, regio- and
stereoselectivity to the B-D-manno configured com-
pounds 6a,b (Scheme 3).'%17

All final compounds 4a—c and 6a,b have never been
reported but their structure was easily established by
NMR analysis, characterized by a set of diagnostic
coupling constants [very small J, , (0-1.6 Hz) and large
Js4 and J, 5 (9-9.4 Hz)] typical of a mannopyranoside
moiety and reported for a lot of analogues.>®!°

In conclusion, we have presented a new, efficient and
flexible method for the regio- and stereocontrolled
transformation of [B-D-galactopyranosides into B-D-
mannopyranosides and  2-acetamido-2-deoxy-B-D-
mannopyranosides through the epimerization at C-4 of
B-D-talopyranosides never reported in literature. The
usefulness of the method has been exemplified by the
effective synthesis, starting from lactose, of biologically
relevant disaccharide derivatives with primary structure
B-D-Manp-(1—-4)-D-Glc and B-D-ManNAcp-(1—-4)-D-
Glc, and by the synthesis of an orthogonally protected
B-D-mannopyranoside scaffold. The use of the above
strategy for the preparation of other di- and oligosac-
charides containing p-D-mannopyranoside units is
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Scheme 3. Reagents and conditions: (i) BH;"SMe,, 2 h, then H,0,, NaOH, 2 h, 82-90%.

under investigation in our laboratory and will be pre-
sented in due course.
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